
📝 Cheatsheet APIs REST: Métodos HTTP

Nota: Este guia é útil tanto para iniciantes quanto para quem precisa de uma referência rápida sobre
APIs REST e métodos HTTP.

🔹 1. Conceitos básicos

REST (Representational State Transfer) é um estilo arquitetural para comunicação entre sistemas
distribuídos via HTTP.

Idempotência: repetir a mesma requisição várias vezes não muda o resultado além da primeira
execução.

Ex.: PUT ✅ , DELETE ✅ , POST ❌
Stateless: o servidor não mantém estado entre requisições. Cada requisição deve trazer todas as
informações necessárias.
Representação: recursos podem ter múltiplas representações (JSON, XML, etc.).
Semântica vs Técnica: métodos diferentes (GET , POST , PUT , PATCH , DELETE) comunicam a
intenção da ação, embora tecnicamente seja possível fazer tudo apenas com GET e POST .

🔹 2. Semântica dos métodos HTTP

🔑 Seguir a semântica correta facilita manutenção, integração com clientes, cache, proxies e
segurança.

GET: ler dados
POST: criar novos recursos
PUT: substituir totalmente um recurso
PATCH: atualizar parcialmente um recurso
DELETE: remover um recurso

Mesmo que tudo possa ser feito com GET/POST, usar cada método corretamente é boa prática
REST.

🔹 3. Tabela comparativa de métodos

Método Função principal Idempotente? Exemplo de uso
Emoji
Representativo

GET Ler dados ✅ /tasks → lista de tarefas 👀

POST Criar dados ❌ /tasks → cria nova tarefa ➕

PUT Substituir dados ✅
/tasks/2 → atualiza
totalmente a tarefa 2

✏️

Método Função principal Idempotente? Exemplo de uso
Emoji
Representativo

PATCH
Atualizar
parcialmente

✅/❌
/tasks/2 → altera apenas o
status da tarefa

🔄

DELETE Remover dados ✅ /tasks/2 → deleta a tarefa 2 ❌

🔹 4. Analogia com CRUD

Create → POST ➕
Read → GET 👀
Update → PUT/PATCH ✏️/🔄
Delete → DELETE ❌

Essa analogia ajuda a mapear rapidamente ações comuns em APIs REST.

🔹 5. Explicação individual e exemplos

GET 👀

Ler dados sem alterar o estado do servidor.

GET /tasks
200 OK
[
 {"id":1,"title":"Estudar REST","done":false},
 {"id":2,"title":"Fazer exercício","done":true}
]

✅ Idempotente: ler repetidamente o mesmo recurso retorna o mesmo resultado.

POST ➕

Criar novos recursos.

POST /tasks
Content-Type: application/json

{
 "title": "Fazer exercício",
 "done": false
}
201 Created

❌ Não idempotente: duas requisições criam dois recursos distintos.

PUT ✏️

Substituir totalmente um recurso existente.

PUT /tasks/1
Content-Type: application/json

{
 "title": "Estudar REST avançado",
 "done": true
}
200 OK

✅ Idempotente: aplicar várias vezes o mesmo conteúdo mantém o mesmo estado.

PATCH 🔄

Atualizar parcialmente um recurso.

PATCH /tasks/1
Content-Type: application/json

{
 "done": true
}
200 OK

Útil quando só alguns campos precisam mudar.
Pode ser idempotente dependendo da implementação.

DELETE ❌

Remover um recurso.

DELETE /tasks/1
204 No Content

✅ Idempotente: deletar repetidamente não altera o estado adicionalmente.

🔹 6. Boas práticas rápidas

⚠️ Dicas para projetar APIs REST claras e seguras:

Use URLs no plural: /tasks em vez de /task .

Retorne status codes HTTP corretos:

200 OK → sucesso de leitura ou atualização
201 Created → criação bem-sucedida
204 No Content → operação concluída sem resposta
400 Bad Request → requisição inválida
404 Not Found → recurso não encontrado
500 Internal Server Error → erro no servidor

Prefira semântica correta dos métodos.

Para alterações parciais, use PATCH ; para substituições completas, use PUT .

Sempre use HTTPS e autenticação; valide inputs; evite expor dados sensíveis.

🧭 Leituras adicionais

📘 MDN Web Docs — Métodos de Requisição HTTP
Guia completo e atualizado da Mozilla com descrições, exemplos e comportamento de cada método.

📙 RFC 9110 — HTTP Semantics (IETF)
Especificação oficial dos métodos HTTP segundo o padrão da Internet Engineering Task Force.

📗 REST API Tutorial — HTTP Methods
Explicações práticas sobre o uso de métodos HTTP dentro do contexto REST, com tabelas e exemplos
claros.

https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Methods
https://datatracker.ietf.org/doc/html/rfc9110#name-method-definitions
https://restfulapi.net/http-methods/

